home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.001368, 0.00684, .invisible, "1");
- v2 = .free(0.600547, 0.023256, .invisible, "2");
- c1 = .c.vv(v1, v2);
- v3 = .vonc(c1, 0.388529, -0.452019, .plus, "A");
- v4 = .vonc(c1, -0.167835, -0.571831, .plus, "B");
- v5 = .vonc(c1, -0.458166, -0.385469, .plus, "C");
- v6 = .vonc(c1, -0.60335, 0.020584, .plus, "D");
- v7 = .vonc(c1, -0.217338, 0.568915, .plus, "E");
- v8 = .vonc(c1, 0.389653, 0.464742, .plus, "F");
- l1 = .l.vv(v8, v1, .invisible);
- l2 = .l.vv(v1, v7, .invisible);
- l3 = .l.vv(v6, v1, .invisible);
- l4 = .l.vv(v1, v5, .invisible);
- l5 = .l.vv(v4, v1, .invisible);
- l6 = .l.vv(v1, v3, .invisible);
- l7 = .l.vlperp(v3, l6, .invisible, .longline);
- l8 = .l.vlperp(v4, l5, .invisible, .longline);
- l9 = .l.vlperp(v5, l4, .invisible, .longline);
- l10 = .l.vlperp(v6, l3, .invisible, .longline);
- l11 = .l.vlperp(v7, l2, .invisible, .longline);
- l12 = .l.vlperp(v8, l1, .invisible, .longline);
- v9 = .v.ll(l12, l11);
- v10 = .v.ll(l11, l10);
- v11 = .v.ll(l10, l9);
- v12 = .v.ll(l9, l8);
- v13 = .v.ll(l7, l8);
- v14 = .v.ll(l12, l7);
- l13 = .l.vv(v13, v14, .yellow);
- l14 = .l.vv(v14, v9, .yellow);
- l15 = .l.vv(v9, v10, .yellow);
- l16 = .l.vv(v10, v11, .yellow);
- l17 = .l.vv(v11, v12, .yellow);
- l18 = .l.vv(v12, v13, .yellow);
- l19 = .l.vv(v9, v12, .red);
- l20 = .l.vv(v10, v13, .red);
- l21 = .l.vv(v11, v14, .red);
- v15 = .v.ll(l19, l20, .green, "I");
- .text("Brianchon's Theorem:");
- .text("");
- .text("Given any hexagon circumscribed about a circle, the lines connecting");
- .text("the opposite vertices all intersect in a point. In the figure, the");
- .text("points labelled 'A' through 'F' control the tangents of the edges of");
- .text("the hexagon. The red lines connect the opposite vertices, and all the");
- .text("red lines intersect in the green point 'I'. Brianchon's theorem");
- .text("actually holds for an arbitrary conic. It is the dual of Pascal's theorem.");
-